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ON, Canada K7K 7B4
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Abstract. Two-particle position- and momentum-dependent integrals appear in binary-collision
approximations of correlation functions in the theory of fluids. We have used the Hamilton–Jacobi
theory to obtain a method for reducing the dimension of such integrals from six to three for the
case in which the interaction is central and continuous. The result has been used to obtain accurate
evaluations of the binary collision approximations for various dynamical correlation functions.
Two examples, (intermediate scattering function and longitudinal current correlation function), are
presented here.

1. Introduction

A certain type of two-particle phase-space integral occurs in statistical physics [1, 2]. It appears
in various correlation functions which describe the dynamics of systems of particles interacting
via a central force, in particular when a binary collision expansion approximation (BCE) is
used. Such six-dimensional integrals have sometimes been evaluated using Monte Carlo
importance sampling, but we have found that this method cannot give the accuracy required
in this kind of dynamical calculation; we use Gaussian quadrature instead. In section 2 we
describe a method by which the six-dimensional phase-space integral can be reduced to a
three-dimensional integral, thus allowing for improved economy and accuracy of numerical
computations of these correlation functions.

This method has already been applied in calculations of the stress autocorrelation function
[3], the transverse current correlation function [4] and the longitudinal current correlation
function [5]. However, its derivation has not been previously presented. In this paper the
method is derived and then illustrated in sections 3 and 4 by application to the density–
density (intermediate scattering) function and the longitudinal current correlation function. The
former contains dynamical position only, while the latter contains both position and dynamical
momentum.

2. Description of method

Consider a two-particle system, each particle having massm, with central interaction described
by potentialU(r). The relative Lagrangian, expressed in spherical coordinatesr, θ , ϕ is

Lr = m(ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2)/4− U(r) (1)
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the corresponding conjugate momenta arepr = mṙ/2, pθ = mr2θ̇/2, pϕ = mr2 sin2 θϕ̇/2
and the relative Hamiltonian is

Hr = p2
r /m + p2

θ /mr
2 + p2

ϕ/mr
2 sin2 θ +U(r) = p2/m +U(r). (2)

We consider integrals of the form

I (t) =
∫

dr dθ dϕ dpr dpθ dpϕ e−p
2/m2v2

0G(r,p, r(t),p(t)) (3)

wherer(t), p(t) are the position and momentum at timet of a particle of massm/2 which
has coordinatesr, θ , ϕ, pr , pθ , pϕ at time t = 0 and then moves in the field of the central
force; the temperature ismv2

0/kB . It is assumed that this integral is well defined for allt > 0;
in particular, we think ofG as containing a factor ofg(r), the pair correlation function, or its
derivativeg′(r) corresponding to an intermolecular force model like that of Lennard-Jones.

The time dependence of the position and momentum must be calculated as accurately as
possible from Newton’s equation in the form

mr̈(t) = 2ṗ(t) = −2∇U(r). (4)

Typically, a Verlet-type algorithm [6] with small time increments is used for each of the many
initial states required by Gaussian quadrature to accurately evaluate the integral for the desired
time range. It is, therefore, essential to express the integral in the most convenient form
possible before starting the numerical computation. We present here a method by which the
dimension ofI (t) can be reduced from six to three: this is accomplished by transforming to
new coordinates to take advantage of the fact that each individual trajectory is planar. The
result is a substantial gain in accuracy for computations using Gaussian quadrature methods.

Using Hamilton–Jacobi theory it is possible to find a canonical transformation from
coordinates(r, θ, ϕ)and momenta(pr, pθ , pϕ) to new coordinates(Q1,Q2,Q3)such that their
conjugate momenta are the relative total energyE, angular momentum̀and its component̀z,
all of which are constants of the motion. Following standard methods [7, 8], it can be shown
that Hamilton’s principal function for this problem is

S(r, θ, ϕ; t) = −Et +
∫

dr
√
m(E − U(r))− `2r−2 +

∫
dθ
√
`2 − `2

z csc2 θ + `zϕ (5)

from which the required coordinates are

Q1 = ∂S

∂E
= −t +

∫
dr

m/2√
m(E − U(r))− `2r−2

(6)

Q2 = ∂S

∂`z
= ϕ −

∫
dθ

`z csc2 θ√
`2 − `2

z csc2 θ
(7)

Q3 = ∂S

∂`
= −

∫
dr

`r−2√
m(E − U(r))− `2r−2

+
∫

dθ
`√

`2 − `2
z csc2 θ

. (8)

Q2 andQ3 ∈ [0, 2π) are the Euler angles as shown in figure 1; the third Euler angle is
γ ∈ [0, π ], and`z = ` cosγ .

Since the transformation fromr, θ , ϕ, pr , pθ , pϕ toQ1,Q2,Q3,E, `, `z is canonical, its
Jacobian has absolute value 1 and

I (t) =
∫

dQ1 dQ2 dQ3 dE d` d`z e−(E−U(r))/mv
2
0G̃(Q1,Q2,Q3, E, `, `z, t) (9)
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Figure 1. Q2 is the angle between OX and the line of nodes OX′. The plane of motion of the
particleP is defined by OX′ and OX′′;Q3 is the angle between OX′ and OX′′. The position of the
particle at timet > 0 is given by polar coordinates(r(t), α(t)) measured in this plane from OX′′.

whereG̃ isG expressed in terms of the new variables. This is accomplished using the geometry
of figure 1; the results forr(t), p(t) in Cartesian basis follow:

x(t) = r(t)[cos(Q3 + α(t)) cosQ2 − cosγ sin(Q3 + α(t)) sinQ2]

y(t) = r(t)[cos(Q3 + α(t)) sinQ2 + cosγ sin(Q3 + α(t)) cosQ2]

z(t) = r(t) sinγ sin(Q3 + α(t))

px(t) = m

2
ṙ(t)[cos(Q3 + α(t)) cosQ2 − cosγ sin(Q3 + α(t)) sinQ2]

− `

r(t)
[sin(Q3 + α(t)) cosQ2 + cosγ cos(Q3 + α(t)) sinQ2]

py(t) = m

2
ṙ(t)[cos(Q3 + α(t)) sinQ2 + cosγ sin(Q3 + α(t)) cosQ2]

− `

r(t)
[sin(Q3 + α(t)) sinQ2 − cosγ cos(Q3 + α(t)) cosQ2]

pz(t) = sinγ

(
m

2
ṙ(t) sin(Q3 + α(t)) +

`

r(t)
cos(Q3 + α(t))

)
.

(10)

In these expressionsr(t), α(t) are the polar coordinates of the particle in its plane of motion,
and ṙ(t) is the radial component of velocity; their initial values arer(0) = r, α(0) = 0 and
ṙ(0) = ±2

√
(E − U(r)− `2/mr2)/m. The subsequent values depend onr, E, `, and also

on the sign oḟr(0); correspondingly, the notationrv(t), αv(t), ṙv(t) is used withv = 1 for
ṙ(0) > 0 andv = −1 for ṙ < 0; also, d̀ z = −` sinγ dγ and dQ1 = mr dr

2
√
m(E−U(r))r2−`2

. Now

(9) has the form

I (t) =
∫

dr dE d`
e−(E−U(r))/mv

2
0mr`

2
√
m(E − U(r))r2 − `2
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×
∑
v

∫ 2π

0
dQ2

∫ 2π

0
dQ3

∫ π

0
dγ sinγ G̃v(r,Q2,Q3, E, `, γ, t). (11)

The key to the success of the method is that the time-dependent quantities in (11) depend only
on r, E, ` andv, not onQ2,Q3 andγ .

It is now a technical problem to evaluate the integrals onQ2, Q3 andγ : the resulting
integral expression will be three-dimensional and have the form

I (t) = m

2

∫ ∞
0

dr r
∫ ∞
U(r)

dE e−(E−U(r))/mv
2
0

∫ √m(E−U(r))r
0

d`
`√

m(E − U(r))r2 − `2

×
∑
v

f (r, E, `, rv(t), αv(t), ṙv(t)) (12)

wheref is the value of the originalG upon changing variables as described.
This method has been used to compute the BCE results for the stress autocorrelaiton

function [3] and the transverse [4] and longitudinal [5] current correlation functions; however,
it has not been described in detail in any of these papers. For the stress autocorrelation function
the integrand of (3) is e−p

2/m2v2
0g′(r)(z/r)F (r(t))(z(t)/r(t)) whereF is the interaction force;

the calculation to reduce this integral is fairly simple because it does not involvep(t): the
result is equation (44) of [3]. For the transverse current correlation function there are four
terms to be reduced, all of which contain bothr(t) andp(t); in particular, terms containing
products likepx(t)pz(t) appear: the result is equations (32)–(35) of [4]. The corresponding
result for the longitudinal current correlation function is discussed in section 4.

3. Application to the density–density correlation function

The binary collision approximation for this correlation function was obtained by Ranganathan
and Pathak [9]. In this paper we are concerned with their equations (12) and (13) which give
the self and distinct two-body interaction terms. The self term is

F
(S)
2 (q, t) = ne−

1
4q

2v2
0t

2

π3/2m3v3
0

∫
dr dp g(r)e

− p2

m2v2
0 {ei

2q·[r(t)−r] − e
i
2q·[r

0(t)−r]} (13)

wherer(t) is the relative position at timet for motion in a given force field with potentialU(r)
andr0(t) = r + 2pt/m is the position of a free particle at timet ; n is the density. The integral
in (13) is

I (S)(q, t) =
∫

dr dθ dϕ dpr dpθ dpϕ g(r)e
−(Hr−U(r))

mv2
0 {e1

2 iq[z(t)−z] − e
1
2q[z0(t)−z]}. (14)

Following the procedure described in section 2, we obtain

I (S)(q, t) = m

2

∫ ∞
0

dr rg(r)
∫ ∞
U(r)

dE e
− (E−U(r))

mv2
0

∫ √m(E−U(r))r
0

d`
`√

m(E − U(r))r2 − `2

×
∑
v

∫ 2π

0
dQ2

∫ 2π

0
dQ3

∫ π

0
dγ sinγ {e1

2 iq sinγ [rv(t) sin(Q3+αv(t))−r sinQ3]

−e
1
2 iq sinγ [r0

v (t) sin(Q3+α0
v (t))−r sinQ3]}. (15)

The integral onQ2 gives 2π and the integrals onγ andQ3 can be evaluated by replacing the
exponentials by their series representations: then each term of (15) contains the form∫ 2π

0
dQ3

∫ π

0
dγ

∞∑
j=0

(iq)q

2j j !
sinj+1 γ [(r(t) cosα(t)− r) sinQ3 + r(t) sinα(t) cosQ3]j
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=
∞∑
j=0

(iq)j

2j j !

∫ π

0
dγ sinj+1 γ

j∑
j ′=0

(
j

j ′

)
(r(t) cosα(t)− r)j ′(r(t) sinα(t))j−j

′

×
∫ 2π

0
dQ3 sinj

′
Q3 cosj−j

′
Q3

=
∞∑
j=0

(iq)j

2j j !

0(
j

2 + 1)
√
π

0(
j

2 + 3
2)

j∑
j ′=0

(
j

j ′

)
(r(t) cosα(t)− r)j ′(r(t) sinα(t))j−j

′

× (1 + (−1)j )(1 + (−1)j
′
)

2

0(
j ′+1

2 )0(
j−j ′+1

2 )

0(j/2 + 1)

= 2
√
π

∞∑
n=0

(−1)nq2n

22n0(n + 3
2)

n∑
n′=0

0(n′ + 1
2)0(n− n′ + 1

2)

0(2n′ + 1)0(2n− 2n′ + 1)

×(r(t) cosα(t)− r)2n′(r(t) sinα(t))2(n−n
′)

= 2π3/2
∞∑
n=0

(−1)nq2n

24n0(n + 3
2)n!

n∑
n′=0

(
n

n′

)
(r(t) cosα(t)− r)2n′(r(t) sinα(t))2(n−n

′)

= 2π3/2
∞∑
n=0

(−1)nq2n

24n0(n + 3
2)n!

[(r(t) cosα(t)− r)2 + (r(t) sinα(t))2]n

= 4π
∞∑
n=0

(−1)n(q/2)2n

(2n + 1)!
[r(t)2 + r2 − 2rr(t) cosα(t)]n

= 4π
sin(qD(t)/2)

qD(t)/2
where D(t)2 = r(t)2 + r2 − 2rr(t) cosα(t). (16)

Thus, we have obtained the three-dimensional integral expression:

I (S)(q, t) = 4π2m

∫ ∞
0

dr rg(r)
∫ ∞
U(r)

dE e−(E−U(r))/mv
2
0

×
∫ √m(E−U(r))r

0
d`

`√
m(E − U(r))r2 − `2

×
∑
v

{
sin(qDv(t)/2)

qDv(t)/2
− sin(qD0(t)/2)

qD0(t)/2

}
. (17)

This expression contains the three distances

Dv(t) = (rv(t)2 + r2 − 2rrv(t) cosαv(t))
1/2 for v = ±1

D0(t) = 2
√
(E − U(r))/m t (18)

whereDv(t) is the distance between a particle’s initial position and its position at timet for
ṙ ≷ 0 when it moves in the given force field;D0(t) is the distance moved by a free particle
during the same time interval. This is illustrated in figure 2.

The two-body term in the binary collision approximation for the distinct intermediate
scattering function is

F
(D)
2 (q, t) = ne−

1
4q

2v2
0t

2

π3/2m3v3
0

∫
dr dp g(r)e

− p2

m2v2
0 {ei

2q·[r(t)+r] − e
i
2q·[r

0(t)+r]}. (19)

Using the method of this paper, the integral in (19) can be reduced to the three-dimensional
expression

I (D)(q, t) = 4π2m

∫ ∞
0

dr rg(r)
∫ ∞
U(r)

dE e−(E−U(r))/mv
2
0
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Figure 2. This figure illustrates the interpretations of the expressions (18) and (21) as distances. An
actual trajectory, (which may be bound or unbound), and the corresponding free trajectory starting
atP(0) = (r, 0) are shown for an initial state witḣr(0) < 0. P(t) = (r, (t), α, (t)) is the position
determined by the central force, andP 0(t) is the free particle position at timet > 0. The distances
areD−(t) = |P(t)− P(0)|,D0(t) = |P 0(t)− P(0)| for the self term, and̃D−(t) = |P(t)− P̃ |,
D̃0−(t) = |P 0(t)− P̃ | whereP̃ is at(r, π) for the distinct term.

×
∫ √m(E−U(r))r

0
d`

`√
m(E − U(r))r2 − `2

×
∑
v

{
sin(qD̃v(t)/2)

qD̃v(t)/2
− sin(qD̃0

v(t)/2)

qD̃0
v(t)/2

}
(20)

where

D̃v(t) =
√
rv(t)2 + r2 + 2r rv(t) cosαv(t)

and

D̃0
v(t) =

√
(2r)2 + 4m−1(E − U(r))t2 + v8rm−1

√
m(E − U(r))r2 − `2 t . (21)

D̃v(t) is the distance from the image pointP̃ at (r, π) to the point(rv(t), αv(t)) andD̃0
v(t) is

the distance fromP̃ to (r0
v (t), α

0
v(t)). This is also illustrated in figure 2.

Note that in (16) and (20) the series remaining after the reduction are expressed as
elementary functions. The corresponding calculation for other correlation functions leads
to convergent power series which can be evaluated numerically as required.

Numerical results for the contributions of these integrals toF (S)(q, t) andF (D)(q, t) for
the Lennard-Jones potential and a chosen value ofq, density and temperature are presented in
section 5.

4. Longitudinal current correlation function

An expression for the BCE approximation to this function has recently been published [10].
The longitudinal viscosity requires equation (36) of that paper which givesφL(t) defined as
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limq→0 φ
L(q, t)/q2: this expression can be written as

φL(t) = 3v2
0 +

n

π3/2m7v5
0

∫
dr dp e−p

2/m2v2
0g(r)[2p2

z +m2v2
0][pz(t)

2 − p2
z ]

+
n

2π3/2m6v5
0

∫
dr dp e−p

2/m2v2
0g(r)

z(t)2F(r(t))

r(t)
[2p2

z +m2v2
0]

+
n

π3/2m5v3
0

∫
dr dp e−p

2/m2v2
0g′(r)r−1z2[pz(t)

2 − p2
z ]

+
n

2π3/2m4v3
0

∫
dr dp e−p

2/m2v2
0g′(r)

z2z(t)2F(r(t))

rr(t)
(22)

whereF is the force. Note that two of these terms contain dynamical momentum dependence.
The dimension of these integrals can be reduced to three by using the expressions in
(10) and the procedure of section 2. Here the dependence onQ2, Q3 and γ is just the
product of integer powers of sines and cosines, so the required integrals can be evaluated
directly. With the substitutionsE = U(r) + mv2

0s and` = mv0r
√
s sinλ, and the notation

1Uv(t) = U(r)− U(rv(t)), the result is

φL(t) = 3v2
0 +

4
√
πn

3m

∫ ∞
0

dr r2g(r)

∫ ∞
0

ds e−ss1/2
∫ π/2

0
dλ sinλ

∑
v

1Uv(t)

+
8
√
πnv2

0

15

∫ ∞
0

dr r2g(r)

∫ ∞
0

ds e−ss3/2
∫ π/2

0
dλ sinλ

×
∑
v

{
21Uv(t)

mv2
0

− s +

[
s

(
1− 2r2 sin2 λ

rv(t)2

)
+
1Uv(t)

mv2
0

]
cos 2(λ− vαv(t))

+v

√
sṙv(t)r sinλ

v0rv(t)
sin 2(λ− vαv(t))

}
+

4
√
πn

15m

∫ ∞
0

dr r2g(r)

∫ ∞
0

ds e−ss1/2
∫ π/2

0
dλ sinλ

×
∑
v

rv(t)F (rv(t))[5 + 2s(2 + cos 2(λ− vαv(t))]

+
4
√
πnv2

0

15

∫ ∞
0

dr r3g′(r)
∫ ∞

0
ds e−ss1/2

∫ π/2

0
dλ sinλ

×
∑
v

{
1Uv(t)

mv2
0

(2 + cos 2αv(t)) + s

[
1− 2r2 sin2 λ

rv(t)2

]
cos 2αv(t)

−s cos 2λ−
√
sṙv(t)r sinλ

v0rv(t)
sin 2αv(t)

}
+

2
√
πn

15m

∫ ∞
0

dr r3g′(r)
∫ ∞

0
ds e−ss1/2

∫ π/2

0
dλ sinλ

×
∑
v

rv(t)F (rv(t))[2 + cos 2αv(t)]. (23)

Numerical evaluations of all terms of (23) have been done for various densities and temperatures
using the Lennard-Jones potential and a Verlet-type algorithm to obtain the required dynamical
quantities. Some of the results are given in [5].
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5. Numerical results

Calculations of BCE approximations for various correlation functions have been performed
using the method described in this paper. These all require knowledge of the pair correlation
functiong(r) corresponding to the model interparticle force. Most of our calculations have
used the Lennard-Jones potential with a table ofg(r) for each density-temperature generated
from the optimized cluster theory [11]. Gaussian quadrature with many points, (Legendre for
finite intervals, Laguerre for(0,∞)), was used to evaluate the triple integrals, (such as (17),
(20) and (23)).

An accurate dynamics calculation over the desired time range is required for each initial
state(r, E, `, v). We have developed an algorithm in polar coordinates which yields an
approximate solution of the equations of motion

r̈(t) = 2

m

(
−U ′(r(t)) +

2`2

mr(t)3

)
α̇(t) = 2`

mr(t)2
. (24)

The first step is chosen to be correct to fourth order in the time increment1t , and then a
Verlet-type procedure is used. For example, the second-order formulae are

r((j + 1)1t) = 2r(j1t)− r((j − 1)1t) +
2

m

[
2`2

mr(j1t)3
− U ′(r(j1t))

]
1t2

α((j + 1)1t) = 2α(j1t)− α((j − 1)1t)− 4`ṙ(j1t)

mr(j1t)3
1t2

with

ṙ(j1t) = ṙ((j − 1)1t) +
2

m

[
2`

mr(j1t)3
− U ′(r(j1t))

]
1t (25)

for j ∈ N. A higher-order formula or smaller1t can be used. It should be noted that such
efforts to obtain high accuracy in the dynamical part of the calculation are practical only if the
number of integration points is as small as possible. In fact, the main objective of this paper
is to accomplish this by reducing the dimension of the integral.

The output can be tested in several ways. In particular, one-dimensional integral
expressions for the first few moments were obtained, evaluated and then compared to the
corresponding dynamical results for small times. Accuracy of the numerical integration
was checked by considering convergence with respect to number of points. Accuracy of
the dynamics was tested by convergence with respect to time increment size, by checking total
energy conservation at each step and by comparison with the known result for the free-particle
motion. In some cases the output can be compared to existing experimental or molecular
dynamics results. Of course, to do this it is necessary to produce accurate calculations of these
integrals for many states. Here we present sample results for the self and distinct parts of the
intermediate scattering function using the expressions obtained in section 3.

Figure 3 shows results for the BCE approximation to the self and distinct parts of the
intermediate scattering function for a selected density-temperature state and value ofq. The
Lennard-Jones potential with length and energy parametersσ andε was used. Dimensionless
units aret∗ = t

√
48ε/mσ 2, n∗ = nσ 3, T ∗ = v∗20 /48 = mv2

0/ε and q∗ = qσ . In (a)
the self free-particle term, e−

1
2q

2v2
0t

2
, the two-particle term as computed from (13), (17) and

(18) and their sums are shown. In (b) the distinct terms are shown: the free-particle term is
e−

1
2q

2v2
0t

2
n
∫

dr(g(r) − 1) cos(qz), the two-particle term is computed from (19)–(21). These
results can be used to obtain the corresponding terms of the dynamical structure factorS(q, ω).

Certain numerical results for the BCE approximation for the longitudinal current
correlation function as given by (23) have been published in [5]. The total and also its
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Figure 3. (a) BCE approximation forF (S)(q∗, t∗) is the solid curve. The short-dashed curve is
the free-particle term and the long-dashed is the two-particle term. (b) The same forF (D)(q∗, t∗).
q∗ = 6.4, n∗ = 0.628,T ∗ = 1.47.
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components called kinetic–kinetic (sum of first three terms), kinetic–potential (fourth and fifth)
and potential–potential (sixth) are displayed there. Corresponding results for the transverse
current correlation function appear in [4].

These are just samples of the type of integral expressions which can be evaluated using
this method. Systematic studies of BCE approximations for various correlation functions are
in progress.
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